

Time Critical Planning Dynamic Replanning

Narragansett Bay Path Planning

Forward Looking Sonar Determines Obstacles
D* employed for a-priori planning & replanning

→ Shortest path algorithms derived from Dijkstra's Algorithm

- T* constrains time to plan
- D* allows path planning in a dynamic environment (e.g., flying through tree canopy)
- Hybrid D*/T* needed for Under Canopy

Litton's Microchip Lasers

→ Average Power : 10 to 100 mW

→ Peak Output Power : 5 to 21 kW

→ Power Consumption : 5 to 15 Watts

→ Power Consumption: Typical/Max.- 4/9 Watts

LIDAR Navigation Sensor

→ Miniature LIDAR using modulated CW or pulse laser

- Based on currently available diode lasers and APD detectors
- Ranging to ~50 m

→ Miniaturized packaging:

- ~9 mm aperture
- $\sim 15 g$
- < 1 W

Turning Radius

- Includes The Following:
 - Control Lag
 - Thrust Reorientation Lag
 - ▶ 20 ft / sec Velocity

Braking Distance (aka Sensor Reqmt)

→Includes The Following:

- Navigation / Sensor Lag
- Guidance Lag
- Control Lag
- Thrust Reorientation Lag
- Stopping Lag

Future Combat Systems Network Centric Force

MAVs on the Battlefield

